17 research outputs found

    Tevatron Higgs Mass Bounds: Projecting U(1)' Models to LHC Domain

    Get PDF
    We study Higgs boson masses in supersymmetric models with an extra U(1) symmetry to be called U(1)^{\prime}. Such extra gauge symmetries are urged by the μ\mu problem of the MSSM, and they also arise frequently in low-energy supersymmetric models stemming from GUTs and strings. We analyze mass of the lightest Higgs boson and various other particle masses and couplings by taking into account the LEP bounds as well as the recent bounds from Tevatron experiments. We find that the μ\mu-problem motivated generic low-energy U(1)^{\prime} model yields Higgs masses as large as 200 GeV\sim 200\ {\rm GeV} and violate the Tevatron bounds for certain ranges of parameters. We analyze correlations among various model parameters, and determine excluded regions by both scanning the parameter space and by examining certain likely parameter values. We also make educated projections for LHC measurements in light of the Tevatron restrictions on the parameter space. We further analyze certain benchmark models stemming from E(6) breaking, and find that they elevate Higgs boson mass into Tevatron's forbidden band when U(1)^{\prime} gauge coupling takes larger values than the one corresponding to one-step GUT breaking.Comment: 11 pages, 3 figure

    The Universal One-Loop Effective Action

    Full text link
    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version accepted for publication in JHE

    Higgs lepton flavour violation: UV completions and connection to neutrino masses

    Get PDF
    We study lepton violating Higgs (HLFV) decays, first from the effective field theory (EFT) point of view, and then analysing the different high-energy realizations of the operators of the EFT, highlighting the most promising models. We argue why two Higgs doublet models can have a BR(h → τ μ) ∼ 0.01, and why this rate is suppressed in all other realizations including vector-like leptons. We further discuss HLFV in the context of neutrino mass models: in most cases it is generated at one loop giving always BR(h → τ μ) < 10−4 and typically much less, which is beyond experimental reach. However, both the Zee model and extended left-right symmetric models contain extra SU(2) doublets coupled to leptons and could in principle account for the observed excess, with interesting connections between HLFV and neutrino parameters

    Vacuum stability and perturbativity of SU(3) scalars

    Get PDF
    We calculate the vacuum stability conditions and renormalisation group equations for the extensions of standard model with a higher colour multiplet scalar up to the representation 1 5 0 that leaves the strong interaction asymptotically free. In order to find the vacuum stability conditions, we calculate the orbit spaces for the self-couplings of the higher multiplets, which for the representations 1 5 and 1 5 0 of SU(3)(c) are highly complicated. However, if the scalar potential is linear in orbit space variables, it is sufficient to know the convex hull of the orbit space. Knowledge of the orbit spaces also facilitates the minimisation of the potentials. In contrast to the self-couplings of other multiplets, we find that the scalar quartic couplings of the representations 3 and 8 walk rather than run, remaining nearly constant and perturbative over a vast energy range. We describe the conditions for walking couplings using a schematic model. With these technical results at hand we revise earlier results of generation of new scales with large SU(3) c scalar multiplets. Our results are easily extendable to models of new physics with additional SU(3) or SU(N) gauge symmetries.Peer reviewe

    Complete Higgs sector constraints on dimension-6 operators

    Get PDF
    Constraints on the full set of Standard Model dimension-6 operators have previously used triple-gauge couplings to complement the constraints obtainable from Higgs signal strengths. Here we extend previous analyses of the Higgs sector constraints by including information from the associated production of Higgs and massive vector bosons (H+V production), which excludes a direction of limited sensitivity allowed by partial cancellations in the triple-gauge sector measured at LEP. Kinematic distributions in H+V production provide improved sensitivity to dimension-6 operators, as we illustrate here with simulations of the invariant mass and pT distributions measured by D0 and ATLAS, respectively. We provide bounds from a global fit to a complete set of CP-conserving operators affecting Higgs physics

    The effective Standard Model after LHC Run I

    Get PDF
    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension- 6 operators on electroweak precision tests that is more general than the standard S, T formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run 1. We illustrate the combined constraints with the example of the two-Higgs doublet model
    corecore